\( \vec{b} \)={1:NUMERICAL:=1~*# \(\vec{u\}\)} \( \vec{u} \)+ {1:NUMERICAL:=-2~*# we would need to walk in the positive \(\vec{u\}\) direction, but then in the negative \(\vec{v\}\) direction} \( \vec{v} \) \( \vec{v} + \vec{w} - \vec{u} \) points from the origin to {1:MCV:testing wrong#\(\vec{v\}\) a \(+\vec{v\}\)~=correct}